Robust speech recognition using temporal masking and thresholding algorithm
نویسندگان
چکیده
In this paper, we present a new dereverberation algorithm called Temporal Masking and Thresholding (TMT) to enhance the temporal spectra of spectral features for robust speech recognition in reverberant environments. This algorithm is motivated by the precedence effect and temporal masking of human auditory perception. This work is an improvement of our previous dereverberation work called Suppression of Slowlyvarying components and the falling edge of the power envelope (SSF). The TMT algorithm uses a different mathematical model to characterize temporal masking and thresholding compared to the model that had been used to characterize the SSF algorithm. Specifically, the nonlinear highpass filtering used in the SSF algorithm has been replaced by a masking mechanism based on a combination of peak detection and dynamic thresholding. Speech recognition results show that the TMT algorithm provides superior recognition accuracy compared to other algorithms such as LTLSS, VTS, or SSF in reverberant environments.
منابع مشابه
An improved model of masking effects for robust speech recognition system
Performance of an automatic speech recognition system drops dramatically in the presence of background noise unlike the human auditory system which is more adept at noisy speech recognition. This paper proposes a novel auditory modeling algorithm which is integrated into the feature extraction front-end for Hidden Markov Model (HMM). The proposed algorithm is named LTFC which simulates properti...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملSpeech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns
In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhanceme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014